The ability to detect object size, location and movement is essential for a visual system in either a biological or man made environment. In this paper we present a model for estimating these parameters by using a set of randomly distributed receptive fields on a retina. This approach differs from more conventional ones in which the receptive fields are arranged in a geometric pattern. The simulation of the model has been performed with a software implementation in a layered fashion. From the input level, computations are performed in parallel which are then combined at a subsequent level to yield estimates of the size and center of gravity of an object. Movement discrimination is implemented by a lateral interaction scheme. The randomly generated receptive fields are now divided into eight weighted classes, corresponding one to a different direction, with the same number of receptive fields for each direction. Both, borders and contrast areas of the object, are useful to identify its...
Miguel Alemán-Flores, K. Nicholas Leibovic,