We present a corner-detection algorithm based on a model for end-stopping cells in the visual cortex. Shortcomings of this model are overcome by a combination over several scales. The notion of an end-stopped cell and the resulting corner detector is generalized to color channels in a biologically plausible way. The resulting corner detection method yields good results in the presence of high frequency texture, noise, varying contrast, and rounded corners. This compares favorably with known corner detectors.
Rolf P. Würtz, Tino Lourens