This paper presents program analyses and transformations that discover a general class of auxiliary information for any incremental computation problem. Combining these techniques with previous techniques for caching intermediate results, we obtain a systematic approach that transforms nonincremental programs into e cient incremental programs that use and maintain useful auxiliary information as well as useful intermediate results. The use of auxiliary information allows us to achieve a greater degree of incrementality than otherwise possible. Applications of the approach include strength reduction in optimizing compilers and nite di erencing in transformational programming.
Yanhong A. Liu, Scott D. Stoller, Tim Teitelbaum