Sciweavers

KDD
1997
ACM

Increasing the Efficiency of Data Mining Algorithms with Breadth-First Marker Propagation

14 years 5 months ago
Increasing the Efficiency of Data Mining Algorithms with Breadth-First Marker Propagation
This paper describes how to increase the efficiency of inductive data mining algorithms by replacing the central matching operation with a marker propagation technique. Breadth-first marker propagation is most beneficial when the data are linked to hierarchical background knowledge (e.g., tree-structured attributes), or when the attributes describing the data have many values. We support our claims analytically with complexity arguments and empirically on several large data sets. We also point out other efficiency gains, including reduced memory management overhead, which facilitate mining massive tape archives.
John M. Aronis, Foster J. Provost
Added 08 Aug 2010
Updated 08 Aug 2010
Type Conference
Year 1997
Where KDD
Authors John M. Aronis, Foster J. Provost
Comments (0)