Sciweavers

KDD
1997
ACM

Beyond Concise and Colorful: Learning Intelligible Rules

14 years 5 months ago
Beyond Concise and Colorful: Learning Intelligible Rules
A variety of techniques from statistics, signal processing, pattern recognition, machine learning, and neural networks have been proposed to understand data by discovering useful categories. However, research in data mining has not paid attention to the cognitive factors that make learned categories intelligible to human users. We show that one factor that influences the intelligibility of learned models is consistency with existing knowledge and describe a learning algorithm that creates concepts with this goal in mind.
Michael J. Pazzani, Subramani Mani, William Rodman
Added 08 Aug 2010
Updated 08 Aug 2010
Type Conference
Year 1997
Where KDD
Authors Michael J. Pazzani, Subramani Mani, William Rodman Shankle
Comments (0)