In the past decade, processor speed has become significantly faster than memory speed. Small, fast cache memories are designed to overcome this discrepancy, but they are only effective when programs exhibit data locality. In this paper, we present compiler optimizations to improve data locality based onasimple yetaccurate cost model. The model computes both temporal and spatial reuse of cache lines to find desirable loop organizations. The cost model drives the application of compound transformations consisting of loop permutation, loop fusion, loop distribution, and loop reversal. We demonstrate that these program transformations are useful for optimizing many programs. To validate our optimization strategy, we implemented our algorithms and ran experiments on a large collection of scientific programs and kernels. Experiments with kernels illustrate that our model and algorithm can select and achieve the best performance. For over thirty complete applications, we executed the origina...
Steve Carr, Kathryn S. McKinley, Chau-Wen Tseng