Sciweavers

COLT
1992
Springer

Toward Efficient Agnostic Learning

14 years 4 months ago
Toward Efficient Agnostic Learning
In this paper we initiatean investigationof generalizationsof the ProbablyApproximatelyCorrect (PAC) learningmodelthat attemptto significantlyweakenthe target functionassumptions.The ultimategoal in this directionis informallytermed agnostic learning, in which we make virtuallyno assumptionson the target function.The namederivesfromthe fact thatas designersof learningalgorithms,we giveup the belief that Nature (as representedby the target function)has a simpleor succinctexplanation. We give a number of positive and negativeresults that providean initial outlineof the possibilitiesfor agnosticlearning. Our results includehardnessresultsfor the mostobviousgeneralizationof the PAC modelto an agnosticsetting, an efficientand generalagnosticlearningmethodbasedon dynamicprogramming,relationshipsbetweenloss functionsfor agnosticlearning,and an algorithmfor a learningproblemthat involveshiddenvariables.
Michael J. Kearns, Robert E. Schapire, Linda Selli
Added 09 Aug 2010
Updated 09 Aug 2010
Type Conference
Year 1992
Where COLT
Authors Michael J. Kearns, Robert E. Schapire, Linda Sellie
Comments (0)