An ideal visibility algorithm should a) quickly reject most of the hidden geometry in a model and b) exploit the spatial and perhaps temporal coherence of the images being generated. Ray casting with spatial subdivision does well on criterion (a), but poorly on criterion (b). Traditional Z-buffer scan conversion does well on criterion (b), but poorly on criterion (a). Here we present a hierarchical Z-buffer scan-conversion algorithm that does well on both criteria. The method uses two hierarchical data structures, an object-space octree and an image-space Z pyramid, to accelerate scan conversion. The two hierarchical data structures make it possible to reject hidden geometry very rapidly while rendering visible geometry with the speed of scan conversion. For animation, the algorithm is also able to exploit temporal coherence. The method is well suited to models with high depth complexity, achieving orders of magnitude acceleration in some cases compared to ordinary Z-buffer scan conve...
Ned Greene, Michael Kass, Gavin S. P. Miller