Sciweavers

AB
2007
Springer

Prefix Reversals on Binary and Ternary Strings

14 years 3 months ago
Prefix Reversals on Binary and Ternary Strings
Given a permutation , the application of prefix reversal f(i) to reverses the order of the first i elements of . The problem of Sorting By Prefix Reversals (also known as pancake flipping), made famous by Gates and Papadimitriou (Bounds for sorting by prefix reversal, Discrete Mathematics 27, pp. 47-57), asks for the minimum number of prefix reversals required to sort the elements of a given permutation. In this paper we study a variant of this problem where the prefix reversals act not on permutations but on strings over a fixed size alphabet. We determine the minimum number of prefix reversals required to sort binary and ternary strings, with polynomial-time algorithms for these sorting problems as a result; demonstrate that computing the minimum prefix reversal distance between two binary strings is NP-hard; give an exact expression for the prefix reversal diameter of binary strings, and give bounds on the prefix reversal diameter of ternary strings. We also consider a weaker form ...
Cor A. J. Hurkens, Leo van Iersel, Judith Keijsper
Added 12 Aug 2010
Updated 12 Aug 2010
Type Conference
Year 2007
Where AB
Authors Cor A. J. Hurkens, Leo van Iersel, Judith Keijsper, Steven Kelk, Leen Stougie, John Tromp
Comments (0)