Multi-Agent Agreement problems (MAP) - the ability of a population of agents to search out and converge on a common state - are central issues in many multi-agent settings, from distributed sensor networks, to meeting scheduling, to development of norms, conventions, and language. While much work has been done on particular agreement problems, no unifying framework exists for comparing MAPs that vary in, e.g., strategy space complexity, inter-agent accessibility, and solution type, and understanding their relative complexities. We present such a unification, the Distributed Optimal Agreement Framework, and show how it captures a wide variety of agreement problems. To demonstrate DOA and its power, we apply it to two well-known MAPs: convention evolution and language convergence. We demonstrate the insights DOA provides toward improving known approaches to these problems. Using a careful comparative analysis of a range of MAPs and solution approaches via the DOA framework, we identify ...