This paper studies colimits of sequences of finite Chu spaces and their ramifications. We consider three base categories of Chu spaces: the generic Chu spaces (C), the extensional Chu spaces (E), and the biextensional Chu spaces (B). The main results are: (1) a characterization of monics in each of the three categories; (2) existence (or the lack thereof) of colimits and a characterization of finite objects in each of the corresponding categories using monomorphisms/injections (denoted as iC, iE, and iB, respectively); (3) a formulation of bifinite Chu spaces with respect to iC; (4) the existence of universal, homogeneous Chu spaces in this category. Unanticipated results driving this development include the fact that: (a) in C, a morphism (f, g) is monic iff f is injective and g is surjective while for E and B, (f, g) is monic iff f is injective (but g is not necessarily surjective); (b) while colimits always exist in iE, it is not the case for iC and iB; (c) not all finite Chu spaces...