: The Borowsky-Gafni (BG) simulation algorithm is a powerful reduction algorithm that shows that t-resilience of decision tasks can be fully characterized in terms of wait-freedom. Said in another way, the BG simulation shows that the crucial parameter is not the number n of processes but the upper bound t on the number of processes that are allowed to crash. The BG algorithm considers colorless decision tasks in the base read/write shared memory model. (Colorless means that if, a process decides a value, any other process is allowed to decide the very same value.) This paper considers system models made up of n processes prone to up to t crashes, and where the processes communicate by accessing read/write atomic registers (as assumed by the BG) and (differently from the BG) objects with consensus number x (with x ≤ t < n). Let ASM(n, t, x) denote such a system model. While the BG simulation has shown that the models ASM(n, t, 1) and ASM(t + 1, t, 1) are equivalent, this paper foc...