The symmetrical decomposition is a powerful method to extract features for image recognition. It reveals the significant discriminative information from the mirror image of symmetrical objects. In this paper, a novel null space kernel discriminant method based on the symmetrical method with a weighted fusion strategy is proposed for face recognition. It can effectively enhance the recognition performance and shares the advantages of Null-space, kernel and symmetrical methods. The experiment results on ORL database and FERET database demonstrate that the proposed method is effective and outperforms some existing subspace methods.