We present a case study to demonstrate the possibility of discovering complex and interesting latent structures using hierarchical latent class (HLC) models. A similar effort was made earlier [6], but that study involved only small applications with 4 or 5 observed variables. Due to recent progress in algorithm research, it is now possible to learn HLC models with dozens of observed variables. We have successfully analyzed a version the CoIL Challenge 2000 data set that consists of 42 observed variable. The model obtained consists of 22 latent variables, and its structure is intuitively appealing.