Abstract. Sensing is at the core of virtually every DDDAS application. Sensing applications typically involve distributed communication and coordination over large self-organized networks of heterogeneous devices with severe resource constraints. As a consequence, developers must explicitly deal with low-level details, making programming time-consuming and error-prone. To reduce this burden, current sensor network programming languages espouse a model that relies on packaged reusable components to implement relevant pieces of a distributed communication infrastructure. Unfortunately, programmers are often forced to understand the mechanisms used by these implementations in order to optimize resource utilization and performance, and to ensure application requirements are met. To address these issues, we propose a novel and high-level programming model that directly exposes control over sensor network behavior using temporal logic specifications, in conjunction with a set of system state...
Asad Awan, Ahmed H. Sameh, Suresh Jagannathan, Ana