We consider inference in a general data-driven object-based model of multichannel audio data, assumed generated as a possibly underdetermined convolutive mixture of source signals. Each source is given a model inspired from nonnegative matrix factorization (NMF) with the Itakura-Saito divergence, which underlies a statistical model of superimposed Gaussian components. We address estimation of the mixing and source parameters using two methods. The first one consists of maximizing the exact joint likelihood of the multichannel data using an expectation-maximization algorithm. The second method consists of maximizing the sum of individual likelihoods of all channels using a multiplicative update algorithm inspired from NMF methodology. Our decomposition algorithms were applied to stereo music and assessed in terms of blind source separation performance.