This paper addresses the problem of computing symbolically the set of reachable configurations of a linear hybrid automaton. A solution proposed in earlier work consists in exploring the reachable configurations using an acceleration operator for computing the iterated effect of selected control cycles. Unfortunately, this method imposes a periodicity requirement on the data transformations labeling these cycles, that is not always satisfied in practice. This happens in particular with the important subclass of timed automata, even though it is known that the paths of such automata have a periodic behavior. The goal of this paper is to broaden substantially the applicability of hybrid acceleration. This is done by introducing powerful reduction rules, aimed at translating hybrid data transformations into equivalent ones that satisfy the periodicity criterion. In particular, we show that these rules always succeed in the case of timed automata. This makes it possible to compute an exact...