We address the message authentication problem in two seemingly different communication models. In the first model, the sender and receiver are connected by an insecure channel and by a low-bandwidth auxiliary channel, that enables the sender to "manually" authenticate one short message to the receiver (for example, by typing a short string or comparing two short strings). We consider this model in a setting where no computational assumptions are made, and prove that for any 0 < < 1 there exists a log n-round protocol for authenticating n-bit messages, in which only 2 log(1/ )+O(1) bits are manually authenticated, and any adversary (even computationally unbounded) has probability of at most to cheat the receiver into accepting a fraudulent message. Moreover, we develop a proof technique showing that our protocol is essentially optimal by providing a lower bound of 2 log(1/ ) - O(1) on the required length of the manually authenticated string. The second model we consider...