Abstract. Let A and B denote cryptographic primitives. A (k, m)robust A-to-B combiner is a construction, which takes m implementations of primitive A as input, and yields an implementation of primitive B, which is guaranteed to be secure as long as at least k input implementations are secure. The main motivation for such constructions is the tolerance against wrong assumptions on which the security of implementations is based. For example, a (1,2)-robust A-to-B combiner yields a secure implementation of B even if an assumption underlying one of the input implementations of A turns out to be wrong. In this work we study robust combiners for private information retrieval (PIR), oblivious transfer (OT), and bit commitment (BC). We propose a (1,2)-robust PIR-to-PIR combiner, and describe various optimizations based on properties of existing PIR protocols. The existence of simple PIR-to-PIR combiners is somewhat surprising, since OT, a very closely related primitive, seems difficult to comb...