Abstract. Game theory is a widely used formal model for studying strategical interactions between agents. Boolean games [8] are two players, zero-sum static games where players' utility functions are binary and described by a single propositional formula, and the strategies available to a player consist of truth assignments to each of a given set of propositional variables (the variables controlled by the player.) We generalize the framework to n-players games which are not necessarily zero-sum. We give simple characterizations of Nash equilibria and dominated strategies, and investigate the computational complexity of the related problems.