In this paper we introduce and study cooperative variants of the Traveling Salesperson Problem. In these problems a salesperson has to make deliveries to customers who are willing to help in the process. Customer cooperativeness may be manifested in several modes: they may assist by approaching the salesperson, by reselling the goods they purchased to other customers, or by doing both. Several objectives are of interest: minimizing the total distance traveled by all the participants, minimizing the maximal distance traveled by a participant and minimizing the total time until all the deliveries are made. All the combinations of cooperation-modes and objective functions are considered, both in weighted undirected graphs and in Euclidean space. We show that most of the problems have a constant approximation algorithm, many of the others admit a PTAS, and a few are solvable in polynomial time. On the intractability side we provide NP-hardness proofs and inapproximability factors, some of ...