Sciweavers

ESA
2006
Springer

An LP-Designed Algorithm for Constraint Satisfaction

14 years 3 months ago
An LP-Designed Algorithm for Constraint Satisfaction
The class Max (r, 2)-CSP consists of constraint satisfaction problems with at most two r-valued variables per clause. For instances with n variables and m binary clauses, we present an O(r19m/100 )-time algorithm. It is the fastest algorithm for most problems in the class (including Max Cut and Max 2-Sat), and in combination with "Generalized CSPs" introduced in a companion paper, also allows counting, sampling, and the solution of problems like Max Bisection that escape the usual CSP framework. Linear programming is key to the design as well as the analysis of the algorithm.
Alexander D. Scott, Gregory B. Sorkin
Added 22 Aug 2010
Updated 22 Aug 2010
Type Conference
Year 2006
Where ESA
Authors Alexander D. Scott, Gregory B. Sorkin
Comments (0)