Reconfigurable architectures are becoming increasingly popular with space related design engineers as they are inherently flexible to meet multiple requirements and offer significant performance and cost savings for critical applications. As the microelectronics industry has advanced, Integrated Circuit (IC) design and reconfigurable architectures (FPGAs, reconfigurable SoC and etc) have experienced dramatic increase in density and speed. These advancements have serious implications for the reconfigurable architectures when used in space environment where IC is subject to total ionization dose (TID) and single event effects as well. Due to transient nature of single event upsets (SEUs), these are most difficult to avoid in space-borne reconfigurable architectures. We present a unique SEU fault tolerance technique based upon double redundancy with comparison to overcome the overheads associated with the conventional schemes.