Sciweavers

GECCO
2006
Springer

Prediction update algorithms for XCSF: RLS, Kalman filter, and gain adaptation

14 years 4 months ago
Prediction update algorithms for XCSF: RLS, Kalman filter, and gain adaptation
We study how different prediction update algorithms influence the performance of XCSF. We consider three classical parameter estimation algorithms (NLMS, RLS, and Kalman filter) and four gain adaptation algorithms (K1, K2, IDBD, and IDD). The latter have been shown to perform comparably to the best algorithms (RLS and Kalman), but they have a lower complexity. We apply these algorithms to update classifier prediction in XCSF and compare the performances of the seven versions of XCSF on a set of real functions. Our results show that the best known algorithms still perform best: XCSF with RLS and XCSF with Kalman perform significantly better than the others. In contrast, when added to XCSF, gain adaptation algorithms perform comparably to NLMS, the simplest estimation algorithm, the same used in the original XCSF. Nevertheless, algorithms that perform similarly generalize differently. For instance: XCSF with Kalman filter evolves more compact solutions than XCSF with RLS and gain adapta...
Pier Luca Lanzi, Daniele Loiacono, Stewart W. Wils
Added 23 Aug 2010
Updated 23 Aug 2010
Type Conference
Year 2006
Where GECCO
Authors Pier Luca Lanzi, Daniele Loiacono, Stewart W. Wilson, David E. Goldberg
Comments (0)