Secure and reliable group communication is an increasingly active research area by growing popularity in group-oriented and collaborative application. One of the important challenges is to design secure and efficient group key management. While centralized management is often appropriate for key distribution in large multicast-style groups, many collaborative group settings require distributed key agreement. The communication and computation cost is one of important factors in the group key management for Dynamic Peer Group. In this paper, we extend TGDH (Tree-based Group Diffie-Hellman) protocol to improve the computational efficiency by utilizing pairing-based cryptography. The resulting protocol reduces computational cost of TGDH protocol without degrading the communication complexity.