Clock-tuning has been classified as important but tough tasks due to the non-convex nature caused by the skew requirements. As a result, all existing mathematical programming approaches are often trapped at local minimum and have no guarantee of obtaining global optimal solution. In this paper, we present optimal clock tuning algorithms which effectively apply capacitance-padding to reduce clock skew, power, and delay for general clock topologies. Capacitancepadding can be achieved by wire-spacing, wire-splitting, wirepadding and transistor-padding. We show that under the Elmore delay model, capacitance-padding can be formulated as a linear programming problem and solved with great efficiency. Capacitance-padding can also be used as a post processing step for any non-zero-skew clock tree or mesh structure to achieve timing closure. Experiment results on several practical industry examples show that our algorithms are extremely efficient. Problems with over