Sciweavers

AUSAI
2001
Springer

A Memetic Pareto Evolutionary Approach to Artificial Neural Networks

14 years 3 months ago
A Memetic Pareto Evolutionary Approach to Artificial Neural Networks
Evolutionary Artificial Neural Networks (EANN) have been a focus of research in the areas of Evolutionary Algorithms (EA) and Artificial Neural Networks (ANN) for the last decade. In this paper, we present an EANN approach based on pareto multi-objective optimization and differential evolution augmented with local search. We call the approach Memetic Pareto Artificial Neural Networks (MPANN). We show empirically that MPANN is capable to overcome the slow training of traditional EANN with equivalent or better generalization.
Hussein A. Abbass
Added 23 Aug 2010
Updated 23 Aug 2010
Type Conference
Year 2001
Where AUSAI
Authors Hussein A. Abbass
Comments (0)