This paper introduces a new method for the rapid development of complex rule bases involving cue phrases for the purpose of classifying text segments. The method is based on Ripple-Down Rules, a knowledge acquisition method that proved very successful in practice for building medical expert systems and does not require a knowledge engineer. We implemented our system KAFTAN and demonstrate the applicability of our method to the task of classifying scientific citations. Building cue phrase rules in KAFTAN is easy and efficient. We demonstrate the effectiveness of our approach by presenting experimental results where our resulting classifier clearly outperforms previously built classifiers in the recent literature.
Son Bao Pham, Achim G. Hoffmann