A problem of great interest in the control of hybrid systems is the design of least restrictive controllers for reachability specifications. Controller design typically uses game theoretic methods which compute the region of the state space for which there exists a control such that for all disturbances, an unsafe set is not reached. In general, the computation of the controllers requires the steady state solution of a Hamilton-JacobiIsaacs partial differential equation which is very difficult to compute, if it exists. In this paper, we show that for classes of linear systems, the controller synthesis problem is decidable: There exists a computational algorithm which, after a finite number of steps, will exactly compute the least restrictive controller. This result is achieved by a very interesting interaction of results from mathematical logic and optimal control.
Omid Shakernia, Shankar Sastry, George J. Pappas