Abstract. We obtain new results regarding the precise average bitcomplexity of five algorithms of a broad Euclidean type. We develop a general framework for analysis of algorithms, where the average-case complexity of an algorithm is seen to be related to the analytic behaviour in the complex plane of the set of elementary transformations determined by the algorithms. The methods rely on properties of transfer operators suitably adapted from dynamical systems theory and provide a unifying framework for the analysis of an entire class of gcd-like algorithms.