Abstract The Examination Timetabling problem regards the scheduling for the exams of a set of university courses, avoiding the overlapping of exams having students in common, fairly spreading the exams for the students, and satisfying room capacity constraints. We present a family of solution algorithms for a set of variants of the Examination Timetabling problem. The algorithms are based on tabu search, and they import several features from the research on the Graph Colouring problem. Our algorithms are tested on both public benchmarks and random instances, and compared with previous results in the literature.