Sciweavers

MICRO
1995
IEEE

Disjoint eager execution: an optimal form of speculative execution

14 years 4 months ago
Disjoint eager execution: an optimal form of speculative execution
Instruction Level Parallelism (ILP) speedups of an order-of-magnitude or greater may be possible using the techniques described herein. Traditional speculative code execution is the execution of code down one path of a branch (branch prediction) or both paths of a branch (eager execution), before the condition of the branch has been evaluated, thereby executing code ahead of time, and improving performance. A third, optimal, method of speculative execution, Disjoint Eager Execution (DEE), is described herein. A restricted form of DEE, easier to implement than pure DEE, is developed and evaluated. An implementation of both DEE and minimal control dependencies is described. DEE is shown both theoretically and experimentally to yield more parallelism than both branch prediction and eager execution when the same, nite, execution resources are assumed. ILP speedups of factors in the ten's are demonstrated with constrained resources.
Augustus K. Uht, Vijay Sindagi, Kelley Hall
Added 26 Aug 2010
Updated 26 Aug 2010
Type Conference
Year 1995
Where MICRO
Authors Augustus K. Uht, Vijay Sindagi, Kelley Hall
Comments (0)