Most recent rendering research has concentrated on two subproblems: modeling the reflection of light from materials, and calculating the direct and indirect illumination from light sources and other surfaces. Another key component of a rendering system is the camera model. Unfortunately, current camera models are not geometrically or radiometrically correct and thus are not sufficient for synthesizing images from physically-based rendering programs. In this paper we describe a physically-based camera model for computer graphics. More precisely, a physically-based camera model accurately computes the irradiance on the film given the incoming radiance from the scene. In our model a camera is described as a lens system and film backplane. The lens system consists of a sequence of simple lens elements, stops and apertures. The camera simulation module computes the irradiance on the backplane from the scene radiances using distributed ray tracing. This is accomplished by a detailed sim...
Craig E. Kolb, Don P. Mitchell, Pat Hanrahan