Understanding the evolution of cooperation as part of an evolutionary stable strategy (ESS) is a difficult problem that has been the focus of much work. The associated costs of cooperation may lower the fitness of an organism below that of its non-cooperating counterpart, allowing the more fit organism to persist and outcompete the cooperator. Insight into these behaviors can help provide a better understanding of many aspects of the natural world, as well as provide future avenues for fighting disease. In this study, we use digital evolution to examine how the abundance of a required resource affects the cooperative production of a public good in an adverse environment. Evolutionary computation is an excellent tool for examining these problems, as it offers researchers complete access to organisms and total control over their environment. We find that stable cooperation can occur in otherwise competitive environments at discrete levels corresponding to the availability of a required ...
Brian D. Connelly, Benjamin E. Beckmann, Philip K.