— In this paper, we consider an anthropomorphically-inspired hybrid model of a bipedal robot with locking knees and feet in order to develop a control law that results in human-like walking. The presence of feet results in periods of full actuation and periods of underactuation during the course of a step. Properties of each of these phases of walking are utilized in order to achieve a stable walking gait. In particular, we will show that using controlled symmetries in the fully-actuated domains coupled with “partial” controlled symmetries and local ankle control laws in the underactuated domains yields stable walking; this result is possible due to the amount of time which the biped spends in the fully-actuated domains. The paper concludes with simulation results along with a comparison of these results to human walking data.
Ryan W. Sinnet, Aaron D. Ames