Abstract. Software development in B and Event-B generates proof obligations that have to be discharged using theorem provers. The cost of such developments therefore depends directly on the degree of automation and efficiency of theorem proving techniques for the logics in which these lemmas are expressed. This paper presents and formalizes an approach to transform a class of proof obligations generated in the Rodin platform in a language that can be addressed by state-of-the-art SMT solvers. The work presented in the paper handles proof obligations with Booleans, integer arithmetics and basic sets.