Sciweavers

ECCV
2010
Springer

Bilinear Kernel Reduced Rank Regression for Facial Expression Synthesis

14 years 3 months ago
Bilinear Kernel Reduced Rank Regression for Facial Expression Synthesis
In the last few years, Facial Expression Synthesis (FES) has been a flourishing area of research driven by applications in character animation, computer games, and human computer interaction. This paper proposes a photorealistic FES method based on Bilinear Kernel Reduced Rank Regression (BKRRR). BKRRR learns a high-dimensional mapping between the appearance of a neutral face and a variety of expressions (e.g. smile, surprise, squint). There are two main contributions in this paper: (1) Propose BKRRR for FES. Several algorithms for learning the parameters of BKRRR are evaluated. (2) Propose a new method to preserve subtle person-specific facial characteristics (e.g. wrinkles, pimples). Experimental results on the CMU Multi-PIE database and pictures taken with a regular camera show the effectiveness of our approach.
Added 29 Sep 2010
Updated 29 Sep 2010
Type Conference
Year 2010
Where ECCV
Comments (0)