In normal scenarios, computer scientists often consider the number of states in a game to capture the difficulty of learning an equilibrium. However, players do not see games in the same light: most consider Go or Chess to be more complex than Monopoly. In this paper, we discuss a new measure of game complexity that links existing state-of-the-art algorithms for computing approximate equilibria to a more human measure. In particular, we consider the range of skill in a game, i.e.how many different skill levels exist. We then modify existing techniques to design a new algorithm to compute approximate equilibria whose performance can be captured by this new measure. We use it to develop the first near ilibrium for a four round abstraction of poker, and show that it would have been able to win handily the bankroll competition from last year’s AAAI poker competition.
Martin Zinkevich, Michael H. Bowling, Neil Burch