Sciweavers

AAAI
2007

Purely Epistemic Markov Decision Processes

14 years 1 months ago
Purely Epistemic Markov Decision Processes
Planning under uncertainty involves two distinct sources of uncertainty: uncertainty about the effects of actions and uncertainty about the current state of the world. The most widely developed model that deals with both sources of uncertainty is that of Partially Observable Markov Decision Processes (POMDPs). Simplifying POMDPs by getting rid of the second source of uncertainty leads to the well-known framework of fully observable MDPs. Getting rid of the first source of uncertainty leads to a less widely studied framework, namely, decision processes where actions cannot change the state of the world and are only intended to bring some information about the (static) state of the world. Such “purely epistemic” processes are very relevant, since many practical problems (such as diagnosis, database querying, or preference elicitation) fall into this class. However, it is not known whether this specific restriction of POMDP is computationally simpler than POMDPs. In this paper we e...
Régis Sabbadin, Jérôme Lang, N
Added 02 Oct 2010
Updated 02 Oct 2010
Type Conference
Year 2007
Where AAAI
Authors Régis Sabbadin, Jérôme Lang, Nasolo Ravoanjanahry
Comments (0)