We present a hybrid approach to Distributed Constraint Satisfaction which combines incomplete, fast, penalty-based local search with complete, slower systematic search. Thus, we propose the hybrid algorithm PenDHyb where the distributed local search algorithm DisPeL is run for a very small amount of time in order to learn about the difficult areas of the problem from the penalty counts imposed during its problem-solving. This knowledge is then used to guide the systematic search algorithm SynCBJ. Extensive empirical results in several problem classes indicate that PenDHyb is effective for large problems. Key words: Constraint Satisfaction, Distributed AI, Hybrid Systems.