In a seminal paper Montanari and Meseguer showed that an algebraic interpretation of Petri nets in terms of commutative monoids can be used to provide an elegant characterisation of the deterministic computations of a net, accounting for their sequential and parallel composition. Here we show that, along the same lines, by adding an (idempotent) operation and thus taking dioids (commutative semirings) rather than monoids, one can faithfully characterise the non-deterministic computations of a Petri net.