This paper introduces fast algorithms for performing group operations on twisted Edwards curves, pushing the recent speed limits of Elliptic Curve Cryptography (ECC) forward in a wide range of applications. Notably, the new addition algorithm uses1 8M for suitably selected curve constants. In comparison, the fastest point addition algorithms for (twisted) Edwards curves stated in the literature use 9M + 1S. It is also shown that the new addition algorithm can be implemented with four processors dropping the effective cost to 2M. This implies an effective speed increase by the full factor of 4 over the sequential case. Our results allow faster implementation of elliptic curve scalar multiplication. In addition, the new point addition algorithm can be used to provide a natural protection from side channel attacks based on simple power analysis (SPA).