Five different texture methods are used to investigate their susceptibility to subtle noise occurring in lung tumor Computed Tomography (CT) images caused by acquisition and reconstruction deficiencies. Noise of Gaussian and Rayleigh distributions with varying mean and variance was encountered in the analyzed CT images. Fisher and Bhattacharyya distance measures were used to differentiate between an original extracted lung tumor region of interest (ROI) with a filtered and noisy reconstructed versions. Through examining the texture characteristics of the lung tumor areas by five different texture measures, it was determined that the autocovariance measure was least affected and the gray level co-occurrence matrix was the most affected by noise. Depending on the selected ROI size, it was concluded that the number of extracted features from each texture measure increases susceptibility to noise.
Omar S. Al-Kadi, D. Watson