Sciweavers

ICDE
2007
IEEE

Efficient Top-k Query Evaluation on Probabilistic Data

15 years 25 days ago
Efficient Top-k Query Evaluation on Probabilistic Data
Modern enterprise applications are forced to deal with unreliable, inconsistent and imprecise information. Probabilistic databases can model such data naturally, but SQL query evaluation on probabilistic databases is difficult: previous approaches have either restricted the SQL queries, or computed approximate probabilities, or did not scale, and it was shown recently that precise query evaluation is theoretically hard. In this paper we describe a novel approach, which computes and ranks efficiently the top-k answers to a SQL query on a probabilistic database. The restriction to top-k answers is natural, since imprecisions in the data often lead to a large number of answers of low quality, and users are interested only in the answers with the highest probabilities. The idea in our algorithm is to run in parallel several Monte-Carlo simulations, one for each candidate answer, and approximate each probability only to the extent needed to compute correctly the top-k answers.
Christopher Re, Nilesh N. Dalvi, Dan Suciu
Added 01 Nov 2009
Updated 01 Nov 2009
Type Conference
Year 2007
Where ICDE
Authors Christopher Re, Nilesh N. Dalvi, Dan Suciu
Comments (0)