Volunteer Computing (VC) is a paradigm that takes advantage of idle cycles from computing resources donated by volunteers and connected through the Internet to compute large-scale, loosely coupled simulations. A big challenge in VC projects is the scheduling of work-units across heterogeneous, volatile, and error-prone computers. The design of efficient scheduling policies for VC projects involves subjective and time-demanding tuning that is driven by knowledge of the project designer. VC projects are in need of a faster and project-independent method to automate the scheduling design. To automatically generate a scheduling policy, we must explore the extremely large space of syntactically valid policies. Given the size of this search space, exhaustive search is not feasible. Thus in this paper we propose to solve the problem using an evolutionary method to automatically generate a set of scheduling policies that are project-independent, minimize errors, and maximize throughput in VC ...