—In this paper, we examine the effects of imperfect channel estimation at the receiver and no channel knowledge at the transmitter on the capacity of the fading Costa’s channel with channel state information non-causally known at the transmitter. We derive the optimal Dirty-paper coding (DPC) scheme and its corresponding achievable rates with the assumption of Gaussian inputs. Our results, for uncorrelated Rayleigh fading, provide intuitive insights on the impact of the channel estimate and the channel characteristics (e.g. SNR, fading process, channel training) on the achievable rates. These are useful in practical scenarios of multiuser wireless communications (e.g. Broadcast Channels) and information embedding applications (e.g. robust watermarking). We also studied optimal training design adapted to each application. We provide numerical results for a singleuser fading Costa’s channel with maximum-likehood (ML) channel estimation. These illustrate an interesting practical tra...