The design of computer architectures requires the setting of multiple parameters on which the final performance depends. The number of possible combinations make an extremely huge search space. A way of setting such parameters is simulating all the architecture configurations using benchmarks. However, simulation is a slow solution since evaluating a single point of the search space can take hours. In this work we propose using artificial neural networks to predict the configurations performance instead of simulating all them. A prior model proposed by Ypek et al. [1] uses multilayer perceptron (MLP) and statistical analysis of the search space to minimize the number of training samples needed. In this paper we use evolutionary MLP and a random sampling of the space, which reduces the need to compute the performance of parameter settings in advance. Results show a high accuracy of the estimations and a simplification in the method to select the configurations we have to simulate to opt...
Pedro A. Castillo, Antonio Miguel Mora, Juan Juli&