Abstract. Network decontamination (or disinfection) is a widely studied problem in distributed computing. Network sites are assumed to be contaminated (e.g., by a virus) and a team of agents is deployed to decontaminate the whole network. In the vast literature a variety of assumptions are made on the power of the agents, which can typically communicate, exchange information, remember the past, etc. In this paper we consider the problem in a much weaker setting; in fact we wish to describe the global disinfection process by a set of cellular automata local rules without the use of active agents. We consider the grid, which is naturally described by a 2-dimensional cellular automata, and we devise disinfection rules both in the common situation where after being disinfected a cell is prone to re-contamination by contact, and in a new setting where disinfection leaves the cells immune to recontamination for a certain amount of time (temporal immunity). We also distinguish between Von Neu...