Morphologicalprocesses in Semitic languages deliver space-delimited words which introduce multiple, distinct, syntactic units into the structure of the input sentence. These words are in turn highly ambiguous, breaking the assumption underlying most parsers that the yield of a tree for a given sentence is known in advance. Here we propose a single joint model for performing both morphological segmentation and syntactic disambiguation which bypasses the associated circularity. Using a treebank grammar, a data-driven lexicon, and a linguistically motivated unknown-tokens handling technique our model outperforms previous pipelined, integrated or factorized systems for Hebrew morphological and syntactic processing, yielding an error reduction of 12% over the best published results so far.