Sciweavers

ACL
2008

Automatic Editing in a Back-End Speech-to-Text System

14 years 1 months ago
Automatic Editing in a Back-End Speech-to-Text System
Written documents created through dictation differ significantly from a true verbatim transcript of the recorded speech. This poses an obstacle in automatic dictation systems as speech recognition output needs to undergo a fair amount of editing in order to turn it into a document that complies with the customary standards. We present an approach that attempts to perform this edit from recognized words to final document automatically by learning the appropriate transformations from example documents. This addresses a number of problems in an integrated way, which have so far been studied independently, in particular automatic punctuation, text segmentation, error correction and disfluency repair. We study two different learning methods, one based on rule induction and one based on a probabilistic sequence model. Quantitative evaluation shows that the probabilistic method performs more accurately.
Maximilian Bisani, Paul Vozila, Olivier Divay, Jef
Added 29 Oct 2010
Updated 29 Oct 2010
Type Conference
Year 2008
Where ACL
Authors Maximilian Bisani, Paul Vozila, Olivier Divay, Jeff Adams
Comments (0)